FORECASTING OMSET PRINTING OF PRINTING SALES IN CV SEMBILAN JAYA WITH NEURAL NETWORK METHOD

RENI VIVIT AYU MAWARTI, WIWIET HERULAMBANG, R DIMAS ADITYO

Abstract


Forecasting is a process for estimating several needs in the future which includes needs in order to meet the demand for goods and services. Neural Network Backpropagation Method is a time series forecasting method. The purpose of this study is to predict the turnover results in the next period obtained by CV. Nine Jaya every week. This study uses sales data obtained from the printing of food boxes, shoe boxes, watch boxes from January 2014 to December 2018. The results of this forecasting are done using the Neural Network method, the smallest MSE value obtained is 0.004211 with 1000 times iteration and learning rate 0.2. The MSE value obtained meets the condition or condition value as a good forecasting method because it is able to meet the MSE value requirement <0.1.


Full Text:

PDF

References


Santosa. B., Data Mining, Teknik Pemanfaatan Data Untuk Keperluan Bisnis. Graha Ilmu , 2007.

Laurene V Fausett, Fundamentals of neural networks | Guide books. Florida Institute of Technology,

Melbourne, 1992.

Maria Agustin, “Penggunaan jaringan Syaraf Tiruan BACKPROPAGATION UNTUK SELEKSI

PENERIMAAN MAHASISWA BARU PADA JURUSAN TEKNIK KOMPUTER DI POLITEKNIK

NEGERI SRIWIJAYA,” Universitas Diponegoro Semarang, Jul-2012. [Daring]. Tersedia pada:

http://eprints.undip.ac.id/39239/1/Maria_Agustin.pdf.

E. Krisnanik, K. Kraugusteeliana, dan V. Indriasari, “Desain Model Sistem Pakar Menu Sehat Wanita Hamil

Berdasarkan Gizi Menggunakan Metode Cooper,” J. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 6, hal. 643,

Nov 2018.

R. D. Adityo dan H. Miawarni, “Implementation of Naive Bayes Classifier Algorithm to Evaluation in

Utilizing Online Hotel Tax Reporting Application,” VOLT J. Ilm. Pendidik. Tek. Elektro, vol. 2, no. 2, hal.

, Okt 2017.


Refbacks

  • There are currently no refbacks.