FORECASTING THE NUMBER OF TOURISTS WHO VISIT TO EAST JAVA USING MONTE CARLO METHOD

Syariful Alam, Syariful Alim

Abstract


Indonesia has many islands and there are beautiful inland areas, interesting historical and cultural ruins, beaches, mountains, and more. Especially in the tourism sector is one of the largest industries that are very influential and grow very fast. The advancement of the tourism industry in a region is very dependent on the number of tourists who come both domestic and foreign tourists. The large number of foreign tourists that come push and accelerate economic growth. So that directly leads to an increase in demand for goods and services. To meet the needs and demands of tourists, it is necessary to predict the number of visits of foreign tourists. One method that can be used in forecasting is Monte Carlo. From the results of Monte Carlo research can work well, From the stage of the prediction system implementation that has been built using the initial parameter 12 months 100x simulation and delta-t = 0.001, then get sigma = 52.2650054, Mu = -0.0398. And the simulation is more accurate in predicting the number of foreign tourist visits in East Java, which has a small error value. To get a smaller error value is by reducing or delta-t value.

Full Text:

PDF

References


Gunarta, I Ketut. 2009. Analisis Risiko Investasi Pabrik Baru Dengan Simulasi Monte Carlo. Surabaya : Program Studi Teknik Industri, ITS.

Gustyana, Tieka Trikartika, Andrieta Shintia Dewi. 2014. Analisis Perbandingan Keakuratan Harga Call Option Dengan Menggunakan Metode Monte Carlo Simulation Dan Metode Black Scholes Pada Indeks Harga Saham Gabungan (IHSG). Jakarta : Jurnal Management Indonesia, Volume 14, No. 4 : 259 – 268.

Kusuma, Bayu. 2013, Simulasi Penjualan Dengan Menggunakan Metode Monte Carlo. Surabaya : Program Studi Teknik Informatika, Fakultas Teknologi Industri, Universitas Pembangunan Nasional “Veteran†Jawa Timur.

Makridakis, Spyros dkk. 1999. Metode dan Aplikasi Peramalan. Edisi Kedua. Jakarta. Binarupa Aksara..

Mayasari, Sherly. 2013. Strategi Komunikasi Public Relations Dalam Program Corporate Social Responsibility (CPR) PT.Asuransi Adira Dinamika. Yogyakarta : Universitas Mercu Buana.

Mill, Robert Christie. 2000. Tourism The International Bussiness. Edisi Satu. Diterjemahkan oleh Tri Budi Sastrio. Jakarta: Raja Grafindo Persada

Nasution. Arman Hakim. 2006. Manajemen Industri. Yogyakarta: Andi Offset.

Ni’mah, Khoirun. 2015. Pengukuran Nilai Risiko Portofolio Dengan Mean-VaR Menggunakan Simulasi Monte Carlo Berdasarkan Data Historis. Malang : Jurusan Matematika, FMIPA, Universitas Brawijaya.

Nurjaman, Asep, Rinda Cahyana, Luthfi Nurwandi. 2012. Simulasi Monte Carlo Untuk Pelayanan Perpanjangan Surat Tanda Nomor Kendaraan Bermotor. Garut : Jurnal Teknik Informatika, Volume 9, No. 1 : 1 – 13.

Rahmadhani, Muhammad Bachtiar, Kartika P. Negara, M.Hamzah Hasyim. 2013. Penerapan Metode Monte Carlo Pada Penjadwalan Proyek Gedung Autis Center. Malang : Fakultas Teknik, Universitas Brawijaya.

Rahmaddeni. 2016. Optimasi Persediaan Sparepart Menggunakan Model Simulasi Monte Carlo. Riau : SATIN, Volume 2, No. 1 : 43 – 51.

Roberta S. Russell, Bernard W. Taylor III.( 2005). Operations Management, 4th Edition. Prentice Hall, New Jersey.

Royce, Winston W. 1970. Managing the Development of Large Software System : Concept and Techniques. London : TRW Publishing Ltd.

Saputro, Doddy. 2013. Analisis Peramalan Dalam Memprediksikan Permintaan Dan Persediaan Mesin Dengan Perhitungan EOQ Dan Simulasi Monte Carlo Pada PT. SURYA WAHANA FORTUNA. Jakarta : Universitas Bina Nusantara.

Spillane J. J. 1987. Pariwisata Inonesia Sejarah dan Prospeknya. Yogyakarta : Kanisius.

Suryadana, M. Liga, 2013. Pengantar Pemasaran Pariwisata. Bandung : Alfabeta.

Taylor, J. W.. 2004. Smooth transition Exponential Smoothing. Journal of Forecasting, vol.23, pp. 385 – 394.

Unas, Saifoe El. 2016. Monitoring Proyek Dengan Metode Monte Carlo Pada Durasi Pekerjaan. Malang : Rekayasa Sipil, Volume 10, No. 3 : 241 – 249.

Veza, Okta. 2014. Simulasi Pengendalian Persediaan Gas Menggunakan Metode Monte Carlo Dan Pola LCM. Batam : JT-IBSI, Volume 1, No. 1 : 1 – 15.

Zainun, N. Y., dan Majid, M. Z. A. 2003. Low Cost House Demand Predictor. Johor : Universitas Teknologi Malaysia.


Refbacks

  • There are currently no refbacks.