CLASIFICATION SYSTEM OF LIBRARY BOOK BASED ON SIMILARITY OF THE BOOK TITLE USING K-MEANS METHOD (CASE STUDY LIBRARY OF BHAYANGKARA SURABAYA)

ARIF MARDI WALUYO, EKO PRASETYO, ARIF ARIZAL

Abstract


In the grouping of book data in the library of Universitas Bhayangkara Surabaya at this time, the grouping is still based on the title and the existing field. So that resulted in the laying of some books whose title is not in accordance with the field of place. To facilitate the grouping of library books, in this research will provide a solution by doing the grouping of books based on the similarity of the title using K-Means method with the distance dissmilarity. The data are grouped a number of 500 titles in the library of Bhayangkara University Surabaya. The data will be processed through the Pre-processing process first of each book title by using the Information Retrieval System which results in the basic word. The basic word that will be used as a feature in the process of grouping so that can be known similarity. The result of the research is that it can be concluded that the application of Library Book Grouping System Based on Similarity of Book Title Using K-Means Method (Case Study of Bhayangkara Library Surabaya) is suitable for data that has been specified on each title. And some processes there are clusters that are always consistent in putting the book data in accordance with the similarity. Of all test results that have the best silhouette value is on using the value of K = 7, ie in the process to 1 with the value of silhouette = 0.2221 

Keywords: Information Retrieval System, K-Means, Library, Pre-processing, Silhouette.


Full Text:

PDF

References


Agusta, Ledy. 2009. PerbandinganAlgoritma Stemming Porter DenganAlgoritmaNazief&AdrianiUntuk

Stemming DokumenTeksBahasa Indonesia. KonferensiNasionalSistemdanInformatika 2009. Bali.

Ananta, K. D. 2013. PengelompokkanBukuPerpustakaan UBHARA MenggunakanMetode K-Means

DenganPengukuran Cosine Similarity. UBHARA. Surabaya.

Hastie, T. et al. 2001. The Elements of Statistical Learning: data mining, interface, and prediction. New York:

Springer- Vergal.

Muhhammad, Ardiansyah. PenggunaanJarak Dynamic Time Warping (DTW) PadaAnalisis Cluster Data

DeretWaktu(StudiKasusPada Dana PihakKetigaProvinsi Se-Indonesia). Malang.

Ong, Johan Oscar. 2013. Implementasi Algoritma K-Means Clustering Untuk Menentukan Strategi Marketing

President University.JurnalIlmiahTeknikIndustri. Bekasi.

Prasetyo, Eko. 2012. DATA MINING – KonsepdanAplikasiMenggunakanMatlab, ANDI, Yogyakarta.

Rismawan, T. danKusumadewi, S. 2008. Aplikasi K-Means

UntukPengelompokkanMahasiswaBerdasarkanNilai Body Mass Index (BMI) &UkuranKerangka. SNATI.

Yogyakarta.

Rousseeuw, Peter J. 1987. Silhouttes : a graphical aid to the interpretation and validation of cluster analysis.

North-Holland.

Suprihatin. 2011. Klastering K-Means untukpenentuanNilaiUjian. Universitas Ahmad Dahlan. Yogyakarta.

Sutarno NS. 2003. “PerpustakaandanMasyarakatâ€. Jakarta: YayasanObor Indonesia, p.7.

Syafrianto, Andri. 2012. PerancanganAplikasi K-Means UntukPengelompokkanMahasiswa STMIK

ELRAHMA Yogyakarta BerdasarkanFrekuensiKunjungankePerpustakaandan IPK. Yogyakarta.

Tala, Fadillah Z. 2003. A Study Of Stemming Effects On Information Retreival In Bahasa Indonesia. Master of

Logic Project. Institute for Logic, Language and Computation Universiteit van Amsterdam. The Netherlands.


Refbacks

  • There are currently no refbacks.