FORECASTING FOR BOOK CLASSIFIED ON A LIBRARY BY USING SINGLE EXPONENTIAL SMOOTHING (CASE STUDY : LIBRARY OF BHAYANGKARA SURABAYA UNIVERSITY)

DEDDY GITA A.P, RIFKI FAHRIAL ZAINAL, M.MAHAPUTRA HIDAYAT

Abstract


To facilitate the addition of library collections of UBHARA libraries, in this study will provide a solution to field
manuals based on forecasting using MSE single exponential smoothing formula errors and RMSE errors. Data is
forecast from 2012 to 2016, with the value of each field of economics, law, socio-political, and engineering. The data
will be processed through the pre-processing process before preparing the data to be forecast. In the calculation
example, the program uses data in 2012 and 2015, alpha value = 0.1 and is calculated from month 1 to month to 3
months so it is estimated to 4. The result of the data obtained is borrowed book which has the highest data is
Economy. Because in every data the number of loan books looks more dominant economic data. In 2015 the
calculation shows the value of MSE error and RMSE error. The error value to determine whether the error
forecasting results is better or not. For 2015 forecast data to be displayed at the value of the error.


References


Agusta, Ledy. 2009. Perbandingan Algoritma Stemming Porter Dengan Algoritma Nazief & Adriani Untuk Stemming Dokumen Teks Bahasa Indonesia. Konferensi Nasional Sistem dan Informatika 2009. Bali.

Ananta, K. D. 2013. Pengelompokkan Buku Perpustakaan UBHARA Menggunakan Metode K-Means Dengan Pengukuran Cosine Similarity. UBHARA. Surabaya.

Hastie, T. et al. 2001. The Elements of Statistical Learning: data mining, interface, and prediction. New York: Springer- Vergal.

Muhhammad, Ardiansyah. Penggunaan Jarak Dynamic Time Warping (DTW) Pada Analisis Cluster Data Deret Waktu(Studi Kasus Pada Dana Pihak Ketiga Provinsi Se-Indonesia). Malang.

Ong, Johan Oscar. 2013. Implementasi Algoritma K-Means Clustering Untuk Menentukan Strategi Marketing President University. Jurnal Ilmiah Teknik Industri. Bekasi.

Prasetyo, Eko. 2012. DATA MINING – Konsep dan Aplikasi Menggunakan Matlab, ANDI, Yogyakarta.

Rismawan, T. dan Kusumadewi, S. 2008. Aplikasi K-Means Untuk Pengelompokkan Mahasiswa Berdasarkan Nilai Body Mass Index (BMI) & Ukuran Kerangka. SNATI. Yogyakarta.

Rousseeuw, Peter J. 1987. Silhouttes : a graphical aid to the interpretation and validation of cluster analysis. North-Holland.

Suprihatin. 2011. Klastering K-Means untuk penentuan Nilai Ujian. Universitas Ahmad Dahlan. Yogyakarta.

Sutarno NS. 2003. “Perpustakaan dan Masyarakatâ€. Jakarta: Yayasan Obor Indonesia, p.7.

Syafrianto, Andri. 2012. Perancangan Aplikasi K-Means Untuk Pengelompokkan Mahasiswa STMIK ELRAHMA Yogyakarta Berdasarkan Frekuensi Kunjungan ke Perpustakaan dan IPK. Yogyakarta.

Tala, Fadillah Z. 2003. A Study Of Stemming Effects On Information Retreival In Bahasa Indonesia. Master of Logic Project. Institute for Logic, Language and Computation Universiteit van Amsterdam. The Netherlands.


Refbacks

  • There are currently no refbacks.