CLASSIFICATION OF DIABETES DISEASE USING NAIVE BAYES Case Study : SITI KHADIJAH HOSPITAL

Ida Lailatul Qurnia, Eko Prasetyo, Rifki Fahrial Zainal

Sari


ABSTRACT
Less knowledge about symptoms and how to treat the disease of diabetes mellitusas well as a number of specialist diabetes mellitus which is still limited is one of thecauses of the growing number of people affected by the disease. Diabetes disease classification system development aims to predict the type of diabetes patient or user who already suffer from diabetes mellitus. Therefore this system is made to diagnose the type of diabetes through laboratory test results, namely in the form of gender, age, disease history, family history, systolic, diastolic tensi tensi,temperature, pulse, blood sugar, fasting blood sugar JPP and Random blood sugar. That is by using the method of naive bayes as a method to process data on the patient's diagnosis. Test results of this system indicates that the system is able to predict the type of diabetes in patients, from the amount of data as much as 200 patient data, with an output that is the form of Diabetes Without Complications, Diabetes Type II and Normalbut obtained the lowest accuracy rating of 39% and the value of the highest accuracy of 80%. Keyword: Classification, Naive Bayes, Diabetes Mellitus, Random Blood Sugar, A History Of The Disease In The Past.

Keyword: Classification, Naive Bayes, Diabetes Mellitus, Random Blood Sugar, A History Of The Disease In The Past


Teks Lengkap:

PDF

Referensi


REFERENCES

Andriani, Anik.(2013), Sistem Prediksi Penyakit Diabetes Berbasis Decision Tree,

AMIK BSI. Jakarta.

Budiansyah, Ari.(2010), Sistem Pakar Diagnosa Penyakit Melalui Telapak Tangan Dan

Lidah Berbasis Web Di Klinik BRC Bandung, Universitas Komputer Indonesia.

Bandung

Bustami.(2014). Penerapan Algoritma Naive Bayes Untuk Mengklasifikasi Data

Nasabah Asuransi.Universitas Malikussaleh. Aceh Utara.

Hermawati, Fajar Astuti.(2009). DATA MINING, Andi : Yogyakarta.

Kusumadewi, Sri.(2009), Klasifikasi Status Gizi menggunakan Naive Bayesian

Classification, Universitas Islam Indonesia. Yogyakarta.

Nurkhozin, Agus.(2011), Komparasi Hasil Klasifikasi Penyakit Diabetes Mellitus

Menggunakan Jaringan Syaraf Tiruan Backpropagation dan Learning Vector

Quantization, Universitas Negeri Yogyakarta. Yogyakarta

Otok, Bambang W.(2012), Boosting Neural Network dan Boosting Cart Pada

Klasifikasi Diabetes Militus Tipe I, Institut Teknologi Sepuluh November. Surabaya.

Prasetyo, E.(2012). DATA MINING – Konsep dan Aplikasi Menggunakan Matlab,

Andi : Yogyakarta.

Prasetyo, E.(2014). DATA MINING – Mengolah Data Menjadi Informasi Menggunakan

Matlab, Andi : Yogyakarta.

Rozaq, Abdur.(2011), Klasifikasi Dokumen Berrita Pada Portal Berbahasa Inggris

Dengan Menggunakan Algoritma Naïve Bayes, Institut Teknologi Sepuluh November.

Surabaya

Soeparman.(1991). ILMU PENYAKIT DALAM – Jilid I Edisi Kedua, Balai Penerbit

FKUI : Jakarta.

Sugiharto, Grawas.(2008), Klasifikasi Dokumen teks Berbahasa Arab Menggunakan

Algoritma Naive Bayes, Institut Teknologi Sepuluh November. Surabaya.

Tampubolon, Mariani Valentina. (2010), Sistem Pendukung Keputusan Penentuan

Penyakit Diabetes Mellitus Dengan Metode Sugeno, Universitas Sumatera Utara.

Medan

WHO.(2010). Global Status Report on noncommunicable Disease. Switzerland:

WHO Press.


Refbacks

  • Saat ini tidak ada refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.